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Abstract A simple Hill-series method is shown to yield accurate energy levels and
expectation values for the linear potential for any angular momentum L and confine-
ment radius R. The numerical results are verified by comparison with those from
two hypervirial perturbation methods which are specially constructed to give accurate
results at L = 0 for small R values and at L > 1 for R = ∞.

Keywords Quantum mechanics · Eigenvalues · Expectation values ·
Perturbation theory

1 Introduction

The energy levels of the radial Schrodinger equation with a linear potential have been
calculated by many different methods [e.g. 1–5]. It is well known that if the angular
momentum L is zero and the coordinate r ranges from zero to infinity then the energy
eigenvalues of the Schrodinger equation

H� =
[
−D2 + V(1)r + L(L + 1)r−2

]
� = E� (1)

are determined by the zeros of appropriate Airy functions. The zeros which directly
give the energy eigenvalues for the special parameter values L = 0 and V(1) = 1 and
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for confinement radius R = ∞ are tabulated to varying numbers of decimal digits in
several works [e.g. 6,7]. For those special parameter values the authors of [8] have
shown that it is possible to do a type of inverse calculation in which some sums of
powers of the Airy function zeros can be deduced from a knowledge of the energy
levels. Extending the Airy function formalism to deal with more general parameter
values for the linear potential involves complicated algebra and leads to lengthy and
unwieldy summations when numerical results are required [9,10]. In Sects. 2 and 3
we describe the main features of the Hill-series method, which can treat the bounded
or unbounded linear potential for any angular momentum. Sections 4 and 5 show
how hypervirial relations can be used to relate various numerical results and also to
permit a perturbation approach to the L = 0 states of the linear potential problem
for small R values. Section 6 describes a different hypervirial perturbation method
which works for higher L values and for R = ∞. Section 7 gives specimen calculated
results, comparing some of them with the perturbation theory results. Section 8 gives
a brief conclusion. The special features of the Hill-series approach which makes it
particularly effective are that it has very small memory storage requirements and that
it can yield expectation values for each state along with the energy eigenvalue.

2 The family of recurrence relations

The Hill-series method incorporates a factor exp(−βr) into the wavefunction, where
the parameter β is varied to optimize the results. The method has previously been
applied to the potential −Zr−1 + V(1)r, usually for the case Z = 1. This potential
(the Cornell potential) has been used to describe the charmonium system in elemen-
tary particle theory [11] and also to describe the so-called radial Stark effect for the
hydrogen atom [12]. For the hydrogen atom problem with a small positive V(1) value
the Hill-series method with real β values gives the perturbed bound state energies.
For a small negative V(1) value the use of a complex β produces the complex reso-
nant state energies [13]. What we are exploring in the present work is how well the
method works if we entirely remove the background Coulomb potential and so take
the originally perturbing V(1)r term as the full potential. Numerical tests have shown
that the renormalized hypervirial perturbation method [14], which works very well for
the case in which Z equals 1 and V(1) is small, loses many decimal digits of accuracy
for the L = 0 states if Z is set equal to zero, since the necessary strong unperturbed
Coulomb potential has then been removed. The non-perturbative Hill-series method
suffers no corresponding loss of accuracy and so can give much better results.

Adding an extra Coulomb term −Zr−1 into the Hamiltonian in (1) and then postu-
lating a solution for the Schrodinger equation H� = E� of the form

� = exp(−βr)rL+1 �0W(N)rN (2)

leads to a recurrence relation for the coefficients W(N):

(N + 2) (N + 2L + 3) W(N + 2) = [2β(N + L + 2) − Z] W(N + 1)

−(E + β2)W(N) + V(1) W(N − 1) (3)
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We note that it is permissible to use the exponential decay factor in the postulated
wavefunction, since we are using only the positive r region. We can formally differ-
entiate (3) with respect to any parameter which it contains, such as E, V(1) or Z and
then use the obvious notation WE(N), WV(N) or WZ(N) for the coefficients in the
series representing the appropriate derivatives. We conclude that the sets of derivative
coefficients obey the same recurrence relation (3) as the W(N) but with one extra term
added on the right hand side. This term arises from taking the derivative of a product
in (3). It can easily be seen that for the WE recurrence relation it is −W(N), for the
WV recurrence relation it is +W(N − 1) while for the WZ recurrence relation it is
−W(N+1). There is thus a one-way coupling between the derivative coefficients and
the W coefficients.

It is necessary to stress an important feature of the calculation which is of particular
relevance for the present calculation. Even when the actual PHYSICAL Z value is zero
the WZ recurrence relation can still be used to find the expectation value of r−1 (as
explained below). We are taking the derivative at zero with respect to any parameter
which has an actual zero numerical value in the Hamiltonian (and so becomes essen-
tially a dummy parameter). This notion of a dummy (ie zero) potential term indicates
how to find the expectation value of r2 directly. All that is required is to think of a
dummy term V(2)W(N − 2) in (3) to see that we simply use the different extra term
+W(N−2) instead of +W(N−1) in the WV recurrence relation (and so on for higher
powers of r). Besides this direct approach, which would have to be applied in turn to
each successive power of r, there are also hypervirial relations which permit a chain of
〈rN 〉 to be calculated from the known E and 〈r〉. This alternative approach is discussed
in Sect. 4.

3 The calculation of energies and expectation values

The first step in the energy calculation is to set a radius r = R at which to impose
the Dirichlet boundary condition that the wavefunction must be zero. In a naïve direct
approach (3) and (2) would be used together, taking a sufficient number of terms in
the series (2) to give a converged value for the wavefunction at r = R for some trial
value of E. The trial E would than be varied so as to yield a zero wavefunction value at
the boundary and the resulting E would be an eigenvalue. In the Hill-series approach
this calculation is considerably simplified by using one uniform formalism for every
possible R, including the case of infinite R at which the results of the traditional Hill
determinant approach are obtained. In effect the Hill-series method imbeds the Hill
determinant method within the power series method.

From (2) we see that, for a fixed r value r = R, taking the sum of terms in the series
up to the rM term will yield a wavefunction from which we can extract a factor equal to
exp(−βR) RM+L+1 which is INDEPENDENT OF E. Thus we can take the remaining
factor, which we denote by S(M), as the actual representative quantity which is to
be rendered zero as E varies. This remaining factor can be written as a series in the
reciprocal coordinate Y = 1/R:

S(M) = W(0)YM + W(1)YM−1 + · · · · · · · · · + W(M) (4)
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On adding one more term in the series we will again have a common E-independent
first factor (which is simply multiplied by R) while studying the new representative
function S(M+1) shows that it obeys the simple recurrence relation

S(M + 1) = S(M)Y + W(M + 1) (5)

Differentiating with respect to E, V(1) or Z shows that (5) has partner recurrence
relations such as, for example

SE(M + 1) = SE(M)Y + WE(M + 1) (6)

with analogous equations for SV and SZ.
This particular formalism has the advantage that it makes the increments of S and

SE easily calculable as we travel along the recurrence relations for the coefficients,
whereas traditional nested multiplication (proceeding “backwards” by adding a higher
power term to the present sum of a series) would be more cumbersome. By extracting
the factor S(M) from the sum (2) we arrive at a much more simple type of “forwards”
nested multiplication. For the infinite space limit of R we set the reciprocal coordi-
nate Y equal to zero in (5) and (6). This then requires us simply to study the latest
coefficient in the wavefunction series rather than the full sum of the series. This “zero
coefficient test” is equivalent to that of the Hill determinant approach and was noted
by Ginsberg [15] as well as by later authors [16,17].

The calculational procedure using the several recurrence relations is straightfor-
ward. All initial coefficients and sums are set equal to zero, except W(0) and S(0),
which are set equal to 1. For some trial E value the recurrence relations are used “in
parallel” up to some suitably high M value MU (M upper) and a corrected E value
E + DE is found by using the Newton’s method equation

DE = −S(MU)/SE(MU) (7)

After a few cycles the E value will converge to an eigenvalue, which will be the
one closest to the initial trial energy, provided that we impose an upper limit on the
magnitude of DE to avoid the large formal DE values which can arise if the initial
value happens to be close to an extremum of the function for which a zero is being
sought. By manipulating partial derivatives we also find that the expectation value of
r is given by

〈r〉 = ∂E/∂V(1) = −SV(MU)/SE(MU) (8)

and that of r−1by

〈r−1〉 = −∂E/∂Z = SZ(MU)/SE(MU) (9)

Increasing the value of MU leads to stable values for the calculated values of the
energy and the expectation values.
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4 Scaling and the use of hypervirial relations

Inspection of the basic equations of the method shows that the recurrence relation (3)
for the W coefficients and the partner ones for the derivative coefficients only use four
terms at a time, while the Eqs. (7)–(9) only use the ratios of quantities.

It is thus possible to make an enormous saving in memory requirements and at the
same time avoid any possible problems due to numerical overflow or underflow. The
way to do this is to replace the indices N + 2 down to N − 1 by the indices 4 down to
1 and then to move along the elements at each step by using the replacement

W(J) = W(J + 1)F (J = 1 to 3) (10)

where F is a scaling factor which is usually chosen to be the reciprocal of the absolute
value of W(4). By simultaneously scaling by the same factor F all the other quantities
(S, SE, SV, SZ, WE, WV, WZ) we keep the ratios of all the quantities invariant and so
Eqs. (7)–(9) remain valid. However, in making this reduction in the number of stored
elements we must decide how much information needs to be retained in order to cal-
culate expectation values. Thus, for example, to find 〈r2〉 we need to have the extra
term W(N − 2), as explained in the preceding section. To ensure that this element is
retained the compact numbering can be modified by replacing the labels N + 2 down
to N − 2 by the labels 5 down to 1, with the shift of Eq. (10) being adjusted to go from
1 to 4.

In the discussion so far we have shown how to calculate directly a few expectation
values of type 〈rN〉 for low N values and so the question arises of how to simplify
the numerical calculation of the 〈rN〉 for higher N, particularly in the case in which a
finite confinement radius R is being used. For the case Z = 0, where we have only the
linear term V(1)r and the angular momentum term L(L + 1)r−2 in the Hamiltonian,
the traditional virial theorem acquires a boundary term [18] and becomes

2E − 3V(1) 〈r〉 = −R(dE/dR) (11)

so that the value of dE/dR can be found from the calculations. Equation (11) makes
physical sense, since as we decrease R we expect the energy to rise and the average
radius to decrease, making the difference on the left hand side positive, which is con-
sistent with the negative value of dE/dR. As R tends to infinity this energy derivative
tends to zero and we obtain the traditional infinite space virial theorem. We note that
the angular momentum term makes no contribution, although it does appear in higher
order hypervirial equations. Thus for example the next order hypervirial equation is

4E〈r〉 = 5V(1) 〈r2〉 + 2L(L + 1) 〈r−1〉 − R2 (dE/dR) (12)

This shows that 〈r2〉 is in principle calculable from 〈r〉, 〈r−1〉 and E (or 〈r〉 and E for the
case L = 0) and subsequently all the higher 〈rN〉 can also be found for the special case
of the linear potential (for any confinement radius and for any angular momentum).

123



J Math Chem (2012) 50:2648–2658 2653

5 Perturbation theory for small R values at L = 0

The work of Fernandez and Castro [19] showed that the use of a confinement radius
R adds a boundary term to each traditional hypervirial equation, so that the general
hypervirial equation for the Hamiltonian −αD2+αL(L+1)r−2+λr takes the modified
form

(α/2)N
[(

N2 − 1
)

− 4L(L + 1)
]
〈rN−2〉 + (2N + 2) E〈rN〉

= (2N + 3) λ〈rN+1〉 − RN+1dE/dR (13)

In our calculations we take the coordinate r to extend from 0 to R. However, for the
special case L = 0, if we consider the origin to be at the central point r = R/2 then
we can see that a special simplification arises. The central point is also a centre of
symmetry for the region and the unperturbed “particle in a box” wavefunctions all
have a definite even or odd parity about that centre. Thus at that central origin the
perturbation series for the case of a perturbing linear potential λr will have NO ODD
POWERS of λ in it. On noting that the linear potential about the origin at r = 0
is simply the potential about the origin at r = R/2 plus the constant term λR/2 we
conclude that the energy perturbation series for L = 0 and for the origin at r = 0 must
take the form

E = n2π2R−2 + λR/2 + E2λ
2R4 + E4λ

4R10 + · · · · · · (14)

with all the EN zero for odd N values <1. The explicit algebraic expressions for the
EN up to E6 given in [20] as a function of n do yield a zero E3 and E5 but the argument
given above shows that all the odd EN are zero, except for the term E1 = R/2 which
arises from the shift of origin just described. To use hypervirial perturbation theory
to work out the energy series it is more simple to drop the obvious powers of R in
(14) and to consider the formal case R = 1. All the hypervirial equations then acquire
the SAME term—dE/dR on the right hand side and this term becomes 2E − 3λ〈r〉 on
using (11). The family of hypervirial equations then involves only E and the various
〈rN〉, which suffices to produce a closed system when perturbation series in λ are intro-
duced for E and for the 〈rN〉. We have written a short program which can work out the
non-zero terms up to E20 in the energy series and then sum the series by setting λ = 1
and inserting the correct powers of R into each term in the sum (14). Using the Wynn
algorithm to sum the series for difficult cases it is possible to obtain high precision
results for the states with L = 0 up to a value of about R = 3 for the ground state and to
higher R values for excited states. (since by contrast with most perturbation problems
the effects of the perturbation become weaker the higher the state.) These perturbation
results provide an alternative check on the results of the non-perturbative Hill-series
method for the special case L = 0. We note that the sign of each EN can vary with the
state number n, so that for a given n the energy perturbation series is not necessarily an
alternating series. The numerical EN for low N values can be estimated by calculations
for several low R values using the Hill-series method and the results obtained in this
manner are consistent with those found from the hypervirial perturbation method. For
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states with high n values the perturbation results become very accurate; for example
for n = 10 and R = 8 the perturbation result is E = 19.50678773209972, which is
reproduced exactly by the Hill-series method by taking 200 terms with β = 10.

6 A perturbation approach for higher L values at R = ∞

The potential V(r) = Ar−2 +Br, with A and B both positive, has a minimum at r = r0,
where r3

0 = (2A/B). Differentiating V twice shows that it obeys the differential equa-
tion

r2V(2) + 2rV(1) = 2V (15)

Introducing the coordinate X = r − r0 and the series expansion

V (X) = �0VNXN (16)

for the potential about the origin at r = r0 we find from the differential equation that
the potential coefficients VN obey the recurrence relation

(N + 2) (N + 1) r2
0VN+2 + 2(N + 1)2 r0VN+1 = [2 − N(N + 1)]VN (17)

where the values V1 = 0 and V0 = V(r0) suffice to initiate the recurrence calculation.
The resulting potential coefficients can then be used in a hypervirial perturbation

calculation based on the unperturbed oscillator potential V0 + V2X2. We found that
the perturbation calculation gave accurate results for L = 2 and for higher L values.

It will directly give quantities such as 〈r〉 if desired and can also be used with non-
integer values of L, so that it can be used to calculate 〈r−2〉 by means of the numerical
differencing approach described in the following section. The method of this section
can be used for any two-term potential with a single well structure.

7 Some numerical results using a variable L value

Given the vast range of L and R values which can be treated it is only possible to give a
selection of typical numerical results which will suffice to demonstrate the simplicity
and accuracy of the Hill-series method for the linear potential problem. A feature of
the method which is particularly useful is that it can be applied to arbitrary angular
momentum values rather than just to the traditional integer values 0, 1, 2, etc.

The equations of the method permit this and to ensure that they can be used in a
fully flexible manner it is necessary to ensure that L is treated as a double precision
variable in any computer program used to implement the Hill-series calculation. In
some computer languages it thus might be necessary to use the symbol XL rather
than L to ensure this double precision status. This fully variable L gives two computa-
tional advantages. First, it allows the calculation to be carried out in several different
dimensions, by using the well-known rule
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XL = L + (D − 3)/2 (18)

which relates an effective angular momentum XL in D dimensions to a general angular
momentum L in a theory which uses the form L(L+1)r−2 for the angular momentum
term in its Hamiltonian. Thus, for example, a fully isotropic state in 3 dimensions
would have L = 0. To find the equivalent fully isotropic states in 2 or 4 dimensions
we see from (18) that we should use XL = −1/2 and XL = 1/2, respectively. These
effective XL values can be used in the equations of the Hill-series method. The angular
momentum term does not contribute a term in the virial equation and so we expect the
virial equality 3V(1) 〈r〉 = 2E to be obeyed in any number of dimensions for R = ∞.
The accurate Hill-series results confirm this.

The second advantage in using continuously variable double precision L is that it
makes it possible to find the energy of a particular level for two L values with a very
small difference and so to find the expectation value 〈r−2〉 for the corresponding state
by using the equation

〈r−2〉 = (2L + 1)−1 (∂E/∂L) (19)

Table 1 Perturbation coefficients to be used in Eq. (14) for the lowest four states of the linear potential,
obtained by the hypervirial perturbation method

n = 1 n = 2

2 −1.097261462040153(−3) 3.272070322253722(−4)

4 2.221011078473665(−8) −2.150741261249757(−8)

6 −1.092195094614907(−12) 1.107159340063149(−12)

8 6.926039859041837(−17) −6.956039376683489(−17)

10 −4.961426561642162(−21) 4.964560952146264(−21)

12 3.753912756358222(−25) −3.820371853095012(−25)

14 4.061285789963617(−28) 3.086189993734866(−29)

16 −3.567076886989357(−29) −2.580201485976520(−33)

18 3.367340080496691(−30) 2.213477552302674(−37)

20 −3.028992967436031(−31) −1.937359137799854(−41)

n = 3 n = 4

2 1.949333639302401(−4) 1.193969079148062(−4)

4 −6.893974944048785(−10) −2.760331908978424(−11)

6 −1.423626361190433(−14) −6.753590987699282(−16)

8 3.010872442263473(−19) −9.814040135375797(−22)

10 −3.030742377872721(−24) 2.327335363628991(−26)

12 1.542709870521132(−30) −8.347153278334914(−32)

14 6.059367571343992(−34) −7.333781422300249(−38)

16 −1.297400465395865(−38) 1.310136997524794(−42)

18 1.299914418663105(−43) 1.366942119162146(−48)

20 4.760158787456087(−49) −5.397128960531323(−53)
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Table 2 Infinite space (Y = 0) values of E, 〈r〉 and 〈r−1〉 for the linear potential Z = 0 and V(1) = 1 as
obtained by the Hill-series method

E 〈r〉 〈r−1〉
(L = −1/2)

1.73721779087141 1.158145193914 1.397391920560

3.67023475587568 2.446823170584 0.8168085663077

5.16974219890423 3.446494799269 0.6295725335977

6.47400287721096 4.316009118141 0.5287594119475

(L = 0)

2.33810741045977 1.558738273640 0.8348669951779

4.08794944413097 2.725299629421 0.5821686958008

5.52055982809555 3.680373218730 0.4723119378752

6.78670809007176 4.524472060048 0.4071451153096

(L = 1/2)

2.87209773747121 1.914731824981 0.6259166799268

4.49301821878074 2.995345479187 0.4763738428621

5.86711681461815 3.911411209745 0.3994272027587

7.09776506793562 4.731843378624 0.3505089375132

MU ranges from 100 to 200 and β = 5 for all the results. The L values used correspond to those for the
ground state in 2, 3 and 4 dimensions. The L = 0 results agree with the double precision zeros of the Airy
function as given in [7]

Table 3 The L = 0, V(1) = 1 groundstate energy as a function of the confinement radius R

R E −dE/dR

8.0 2.33810741549581 2.39452(−8)

7.0 2.33810788078093 2.02773(−6)

6.0 2.33813490033196 1.04853(−4)

5.0 (2.339)04933491280 3.05057(−3)

4.0 (2.355495)22653490 4.49760(−2)

3.5 (2.39665422)127899 1.33249(−1)

3.0 (2.509011068)19905 3.45450(−1)

2.5 (2.786484236164)80 8.31057(−1)

2.0 (3.49986758874422) 2.00240(0)

1.5 (5.13093723880705) 5.36346(0)

1.0 (10.3685071618363) 1.92436(1)

β = 5 and MU = 100 sufficed to obtain the results. The dE/dR values are found from the virial theorem
[Eq. (11)]. The results from the perturbation series based on the coefficients of Table 1 are shown in brackets.
The dE/dR values are severely truncated

To find 〈r−2〉 by the direct implicit differentiation methods of Sect. 3 would be quite
complicated, since the parameter L appears in terms on both the left and the right sides
of the recurrence relation (3).
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Table 4 Hill-series energies for L = 2 and L = 3 (with R = ∞, β = 5, NU = 200)

L = 2 L = 3

(4.248182257)15379 (5.05092563492)817

(5.629708376)69592 (6.3321153747)1175

(6.86888268)940316 (7.504645642)06895

(8.0097029)2267897 (8.597117011)90232

(9.077003)05076353 (9.62726701)324443

The results from the perturbation method of Sect. 6 are shown in brackets

Table 1 gives the perturbation coefficients EN in the expansion (14) for the lowest
four states of the linear potential with confinement radius R and angular momentum
zero. Table 2 gives the energies and some expectation values for the lowest four states
of the linear potential as found by the Hill-series method for R = ∞ (i.e Y = 0).
The angular momentum values used correspond to the isotropic states in 2, 3 and 4
dimensions. The energies for the lowest four states with L = 0 agree with the corre-
sponding double precision zeros of the Airy functions as given in [7]. Table 3 shows
the Hill-series energy of the L = 0 ground state of the linear potential as the confine-
ment radius R varies. The results for small R values agree with those found by using
the hypervirial perturbation coefficients which are shown in Table 1. Table 4 shows
the lowest five state energies for L = 2 and L = 3, comparing the Hill-series results
with those from the hypervirial perturbation method described in Sect. 6.

8 Conclusion

The Airy function approach for the linear potential is easy to apply only for the spe-
cial case in which L = 0 and R = ∞. The Hill-series method is applicable for any
real value of L and can yield energies and expectation values for states of the linear
potential with variable confinement radius R and variable dimension D. The implicit
differentiation procedure used in the method directly produces expectation values
without any quadrature and without the need for wavefunction storage.
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